Rutgers University: Algebra Written Qualifying Exam August 2016: Problem 3 Solution

Exercise. Let I be an ideal in a principal ideal domain R. Show if $I \neq R$, then

$$\bigcap_{n=1}^{\infty} I^n = (0).$$

(Here I^n is the ideal generated by all products $x_1 \dots x_n$ such that $x_i \in I$ for all $i = 1, \dots, n$)

Solution. Suppose for contradiction, $x \in \bigcap_{n=1}^{\infty} I^n$ and $x \neq 0$. Since I is an ideal and R is a principal ideal domain, $I = \langle a \rangle = Ra = \{ra : r \in R\}.$ $x \in I^n \implies x \in Ra^n \qquad \forall n$ $\implies \exists b_1, \dots, b_n \in R \text{ s.t. } x = b_n a^n \qquad \forall n$ $\implies b_n a^n = b_{n+1} a^{n+1}$ $\implies b_n = b_{n+1} a$ $Rb_1 \subseteq Rb_2 \subseteq \dots \subseteq Rb_n$ R is a PID \implies is <u>noetherian</u>: $Rb_n = Rb_{n+1} \text{ for some } n$ $\implies b_n = r_1 b_{n+1} \text{ and } r_2 b_n = b_{n+1} \text{ for some } r_1, r_2 \in R$ $\implies a \text{ must be a unit} \implies I = Ra = R, \text{ a contradiction.}$